Introduction to Ordinary Differential September 27, 2017
Equations

: . Outline
Introduction to Ordinary
Differential Equations + Review numerical solutions
+ Basics of differential equations
Larry Caretto * First order equations
Mechanical Engineering 501AB — Separable solutions
Seminar in Engineering Analysis — General solution for linear equation
* Introduction to second order equations
— Problems considered
September 27, 2017 — Basis of solutions
— Constant-coefficient, homogenous case
Northridge 2

Review Numerical Solutions Basic Differential Equations
+ Gauss elimination is basic approach » Adifferential equation is an equation
- Need pivoting strategies to reduce that contains derivatives of a dependent

variable, e.g., y(x) or u(x,y)

round-off error in solution . . ] . .
o o « Differential equation solution gives y(x)
* Modifications of Gauss elimination or u(x,y) as a function of independent
— Gauss-Jordan sometimes used for finding variable(s)

inverse of matrix — Ordinary differential equations (ODE) have

— LU method generally preferred one independent variable
» Does most of the elimination work without — Partial differential equations (PDE) have
knowing the right-hand-side (b) vector more than one independent variable
s tankl) integer vector required for pivoting s Callomta iz nteriky .
Northridge Northridge
Definitions and Terms More Definitions and Terms
« Differential equations have boundary » The order of a differential equation is
conditions or initial conditions the order of the highest derivative in the
» A general solution to the differential equation
equation is one which can fit any + Alinear differential equation is one in
boundary or initial condition by adjusting which the dependent variable and its
“constants” in the solution derivatives all appear in linear terms
+ A solution that satisfies the differential » A homogenous differential equation is
equation and the boundary or initial one in which all terms involve the
conditions is called a particular solution dependent variable and its derivatives
Northridge ° Northridge °
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Introduction to Ordinary Differential
Equations

x: Independent
Examples of ODES . pependent

homogenous ax®

2
« Second-order, non- d y+sin(y)=0

linear, homogenous

non-homogenous dx?
« Third-order, non-linear, dJ ydl
non- homogenous dx® dx
Nnrlllrl(lqe 7

* Third-order, linear, d%y sm(x) y X2y =0

dx?
« Second-order, linear, d° y +y =e*cos(x)

Separable Forms

« Simple differential equations can be
written as integrals
— Even if numerical quadrature is required
this is more accurate than numerical
solution of ODE

%:f(x) = y=[f(ydx+C
—f(x)g(y) = j jf(x)dx+c
dy
dx h(x] AR jh(u) u+
Nnrtllrl(lqe

P(x,y)dx + Q(x,y)dy =0

* Is P(x,y)dx + df = of of

Q(x,y)dy = 0 an PV
exact form? of of
- From differential P(x,y)=— Q(X,y)=—
of a function of ox oy
two variables, df = Pdx + Qdy
f(x,y), see if P and o s
Q satisfy partial f_of , od_oo
derivative relation o Xy ox oy dy ox
« Ifdf=0,f=C oQ oP
Northridge X oy d
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Applications

« First order differential equations are
often used to model rate processes
— Newton'’s cooling dT/dt = -k(T - T.,)

— chemical reactions, dc/dt = f(c,T)

* Newton’s second law, F = ma leads to
second order equations for mechanical
systems md?y,/dt? =

+ Deflection, y, of rectangular beam
oriented in x direction Eld*y/dx* = f(x)

Calsforri State Universicy
Northridge

Linear First-Order Equation

- The solution to the ~ dY
—+ PIX)y =rX
first-order equation  (x p( )y ( )

* |Is given by the following result

y=e™" Uehr(x)dx+CJ where h :'[ p(x)dx

» The constant, C, requires the
specification of the value of y at a
particular value of x; e.g.,y =y, atx =1

Califorry el Ste Lniversity 10
Northridge

Exact Form

aQ oP
e If —=—, P(xy)dx +Q(x,y)dy = df

+ We may r%t know (or care) what f is,
but we use df = P(x,y)dx +Q(x,y)dy to
solve the differential equation

» We also know that P(x,y)dx +Q(x,y)dy =
0 means that df = 0 or f = a constant

» We also know that P and Q are
derivatives of this mysterious f function

8Q oP
P(x, — and X, — only if
(xy)= ,6x Q(x,y)= ay yir = 6¥
Nnrtllrl(lqe 2
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Exact Forms |l

* Integrate df = P(x,y)dx + Q(x,y)dy for
constant f (df = 0)
« f=constant, C, because df =0
i :jdf = jp(x, y)dx+g(y)=C

y const

Exact Forms IlI

+ Final equation must be a function of y only
* Integrate this equation for g(y)

dg(y) =Q(x,y)- [jP(x,y)dx}h(y)

y=const

o _ dg(y) f4go { }
Y)=— P d 9(y)=|dg=|<Q(x,y) P(x,y)dx |dy+C
Q) oy 6y y- cjom(x ” X}r dy I I{ » yj
dg(y) » Substitute g(y) into equation for f
by - v)—a[ [P v)dX}—hW) f=[df = [P(xy)dx+ g(y)+C
Sy y= const Californi Sate [ihersity
Ni)rlhrulge ? Northridge y=const

Exact Forms IV
f=[df = [P(xy)dx+g(y)=C,
y=const
o) =] {Q(X, y)—jy{ [P(x, y)dx}dwcz

y=const

0
J'P(x, y)dx+j QX y)—— J'P(x, y)dx ;dy+C, =C,;
y=const 6y y=const

+ Combine constants into a single constant

+ Obtain implicit relationship between y and x

15

alsfornsi State Unhersity
]\Jnrthritlge

Solving Exact Pdx + Qdy =0

JP(M)_;L/JB(X' y)dx}}dy—c

» Step 1 — Integrate P(x,y)dx with y constant

» Step 2 — Take the y derivative of the step 1
result and subtract it from Q(x,y)

» Step 3 — Integrate result of step 2, that will
be a function of y only, overy

» Step 4 — Add results of steps 1 and 3
Northridge

Integrating Factors

» Used to integrate P(x,y)dx + Q(x,y)dy = 0
if P and Q are not exact

 Basic idea is to find a factor, F, that
multiplies the original equation: FPdx +
FQdy =0

 Find the F factor so that FP and FQ are
exact

» Use trial and_ error or OFQ OFP
process outlined in <
KreySZ|g to find F OX oy

Nnrthrltlge

First-order Equations

« First order rate equation where rate is
proportional to amount dy/dt = -ky

"y = ye

» General linear first order equation for
y(x): dy/dx + f(x)y = g(x) has closed form
solution shown below

e Cis found from initial condition
p:jf(x)dx y:e’p[C+jepg(x)de

18

alsfornsi State Unhersity
]\Jnrthritlge
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Equations

Existence and Uniqueness

* Important because we can try numerical
solution of an ODE with no solution

» Examine dy/dx = f(x,y) with y(X,) = y, in
aregion [x— x| <aand |y -y, <b
* Derivate is bounded: [f(x,y)] < K

+ Equation has a solution in region [x — x|
< min(a, b/K)

* Uniqueness requires |of/oy| <M

Calsforri State Universicy
Northridge

September 27, 2017

Existence and Uniqueness

* Example: xy’'=4,y(0)=0

* Here we have dy/dx = f(x,y) = 4/x with
Y(x=0) =y, =0

* Regionis|x—0|<aand|y-0|<b

* Derivative is not bounded at x = x, =0

» Therefore have no solutions: [f(x,y)| <K

+ Attempted solution is y = 4In(x) + C, but
we cannot apply thisat x =x,=0

Califorry el Ste Lnibversity 2
Northridge

Second Order Equations

* First look at "
homogenous dtzy + p(x)7+ q(x)y =0
linear equations
» Then consider dzy
nonhomogenous ;2 Ly p(X)*+ q(x)y=r(x)
equations
* Most nonlinear d’y d
¢[ J y Y X] =

equations require de?’
numerical solution

Califorry el Ste Lniversity 2
Northridge

Linear Homogenous 2" Order

d?y
dt?
* Any linear comblnatlon of two
solutions, y, and y,, to this equation,
y = C4¥4 + CyY,, is also a solution
+ Can prove this by substituting c,y, +
C,Y, combination into original equation
for which y, and y, are solutions

+p(¥) y+q(x)y 0

Califorry el Ste Lniversity 2
Northridge

Linear Homogenous 2" Order ||

2
S0 L4y =0

» A basis of solutions for this equation is
any two linearly independent solutions
y;andy,

* y =Cq.yq + CyY, is a general solution
where ¢, and c, can be used to fit initial
or boundary conditions
— Initial conditions specify y(0) and y’(0)

— Boundary conditions specify y(a) and y(b)

23

Existence and Uniqueness

ME 501A Seminar in Engineering
Analysis

d’y

d 2

* The |n|t|al value problem defined above
on the open interval, |, defined as a < x
< b, has a unique solution if p(x) and
q(x) are continuous on the interval, I,
and X, is located on the interval, I.

» Next slide discusses linear indepen-
dence of solutions to this ODE

24

+p(X) y+q(x)y 0 with y(x,)=K, y'(x)=K,

Page 4



Introduction to Ordinary Differential
Equations

Linear Independence

September 27, 2017

d?y

d 2

* The solution to the initial value problem
defined above can be written as y(x) =
Kqy4(X) + Kyy,(X) where y, and y, are
linearly independent

* For kyy,(x) + kyy,(x) = 0, we must have

k, = 0 and k, = 0 for y, and y, to be linearly
independent

Califorry el Ste Lnibversity 2
Northridge

Wronski Determinant

+p(x)—+q(x)y 0 with y(x,)=K, (%) =K,

yi Y2 , ,

s Wy y2) = yi | T Y1¥Y2 — Y2V1

* W is called the Wronski determinant or
Wronskian for the ODE under discussion

d?

— p(x)—+q(x)y 0 with y(x,)= K, ¥'(%,)=K,

* The solutions to the ODE are linearly
independent if there is some point, x4, in
the solution interval for which W is not 0

Califorry el Ste Lnibversity %
Northridge

Constant Coefficients

» Simplest solution is when p(x) and q(x)
are constants

» The differential equation for this case is
shown below

« The solution is shown on the next slide

dy+d +ey 0 = >
dx? dx dx

Califorry el Ste Lniversity 27
Northridge

Constant Coefficient Solution

* ODE solutions are based on solution of
characteristic equation A2+ aA +b =0

+ Solutions for A are roots of quadratic

jﬁi—a+x/az—4ﬂ
d’y dy B 2
—+a—+py=0
dx? “ dx P 1o —a—+a’-4p
ik e/l

2
+ Two linearly-independent ODE
solutions are y, = e** and y, = e**

N{)l‘llll‘l(lgt‘ ®

Constant Coefficient Solution

+ Two solutions, y, = e** and y, = e*,
form basis for general solution

* General solution isy = Cyy, + Cyy,
_—a+qa’-4p —a—ya’-4p
A= 2 A= 2
» Can show solution is correct by
substituting into original ODE
» Find C, and C, from initial or boundary
conditions

29

Constant Coefficient Solution

ME 501A Seminar in Engineering
Analysis

» General solution is linear combination of
linearly-independent solutions

* y=Cyyy + Cpy, = Cietx + Creh*

Derivatives of the individual solutions

arey, = Mer*andy, =-LAerXy,” =

r2erX and y,” = A,%ehX

Use these derivatives (plus y, = e** and

Y, = ekzx) to verify individual solutions

Does d’y, +oz—+ﬂyI AeM +are™™ + fet* =07

. dt”

30
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Constant Coefficient Solution

e +aet + pet* =0 = |B+al+B=0

Characteristic equation
_—a +x/a -4p

e R e
ol BEESER O

Rral+pf=2 )&+a‘ kﬁ+aR‘ 2 +R=0

Nnrlhrulge

Exercise

+ Find the solution to the following ODE
with initial conditions that y(0) = 1 and
y'(0)=0 2

&y 39,5V
dx dx 4
* Repeat the solution to the ODE with
boundary conditions that y(0) = 1 and
y(1)=0

32

alsfornsi State Unhersity
Nnrlhritlge

Exercise Solution (1/3)

* ODE has form discussed previously
witha=3andB=5/4 42 d
Wgwu ad—:(/wuﬁy =0
+ Solution is y = C,e** + C,e** where

_—atya’-4p -3+ \3-4(/4) -3:+4_-1 -5
2 2 2

2'2

Az

—5x/2| Apply boundary condi-

_~.—X/2
|y—C1e G2 tions to find C, and C,

33

alsfornsi State Unhersity
]\Jnrthritlge

Exercise Solution (2/3)

» Firstcasey(0)=1,y'(0)=0

y© =1=Ce %2, ce 502 _¢ .c,
y(0)-0--1ce 02 S B0V2_ G 5 o g,
2 2 2
C,+C,=1=-5C,+C,=—4C,=>C,=-1/4  C,=-5C,=5/4

—5x/2

y=Ce X2 +C,e

§e— x/2 _13_5"/2
4 4

» We can show that y(0) =1 and y’(0) =0

y:

34

alsfornsi State Unhersity
]\Jnrthritlge

Exercise Solution (3/3)

» Second case y(0) =1, y(1) =
y(0)=1=Ce Y2+ ce 50 )2 =C,+C,=>C,=1-C,
y)=0-ceY21ce 802 _g_c Y2, 0502

_]/2 1
—1y2  _-5)2)_ - - _
Cz(e ]/ —-e 5(1)/ j:e 1/ Cz_e_1/2_6_5/2_1_e—2
C -1-C,-1- 17Z :1—e’2—1: —e’2
1-e 1-e? 1-e?
yo— e’ -x2, 1 -5x2
1-e? e
* . We can show that y(0) = 1 and y(1) = 0
Nnrthrltlge %

y=Ce_X/2+C e—5x/2

Check General Solution (1/2)

« Plug y=Ce Y2 1ce 2
solution - -
into y':_%cle Ve —gcze 2
original L1 _x/2 25 _5x/2
ODE y :che X/ +Tcze X/
dier dy §y 7C -x/2 25, ~5%/2
dx?* dx 4 4

+3|:—%C1e X/Z_g € 5X/2:‘+z|:c1e_ X/2+Cze_5X/2:|

36
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Check General Solution (2/2)

+ 3[—
2

Calsforri State Universicy
Northridge

2
d Z’+3ﬂ+§y:101e_x/2 +§C2
dx dx 4 4 4

lcle_ X2 —gcze_SXﬁ}%[Qe_ X2 +C2e_5x/2}

e—5x/2

= 1_§+§ Cle_x/2+ é_E_'.E Cze_5x/2
4 2 4 4 2 4

:[1—i+5}qe_ X/2 +[25—j0+5}c29_5x/2 -0

37
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