Introduction to Ordinary Differential Equations

Larry Caretto Mechanical Engineering 501AB Seminar in Engineering Analysis

September 27, 2017

California State University Northridge

Review Numerical Solutions

- Gauss elimination is basic approach
- Need pivoting strategies to reduce round-off error in solution
- Modifications of Gauss elimination

 Gauss-Jordan sometimes used for finding
 - Causs-ordan sometimes used for mining inverse of matrix
 – LU method generally preferred
 - Does most of the elimination work without knowing the right-hand-side (b) vector

3

5

California State InnID, integer vector required for pivoting

Basic Differential Equations A differential equation is an equation that contains derivatives of a dependent variable, e.g., y(x) or u(x,y) Differential equation colution gives y(x)

- Differential equation solution gives y(x) or u(x,y) as a function of independent variable(s)
 - Ordinary differential equations (ODE) have one independent variable
 - Partial differential equations (PDE) have more than one independent variable

California State University Northridge

Northridge

Definitions and Terms

- Differential equations have boundary conditions or initial conditions
- A general solution to the differential equation is one which can fit any boundary or initial condition by adjusting "constants" in the solution
- A solution that satisfies the differential equation and the boundary or initial conditions is called a particular solution

Northridge

More Definitions and Terms The order of a differential equation is the order of the highest derivative in the equation A linear differential equation is one in which the dependent variable and its derivatives all appear in linear terms A homogenous differential equation is one in which all terms involve the dependent variable and its derivatives

ME 501A Seminar in Engineering Analysis

Introduction to Ordinary Differential

Equations

ME 501A Seminar in Engineering Analysis

- solution of an ODE with no solution • Examine dy/dx = f(x,y) with $y(x_0) = y_0$ in
- a region $|x x_0| < a$ and $|y y_0| < b$
- Derivate is bounded: $|f(x,y)| \leq K$
- Equation has a solution in region $|x x_0| < min(a, b/K)$

19

- Uniqueness requires $|\partial f/\partial y| \leq M$

California State University Northridge

25

California State University Northridge

ME 501A Seminar in Engineering Analysis

 $\begin{aligned} \frac{d^2 y}{dx^2} + 3\frac{dy}{dx} + \frac{5}{4}y &= \frac{1}{4}C_1e^{-x/2} + \frac{25}{4}C_2e^{-5x/2} \\ + 3\left[-\frac{1}{2}C_1e^{-x/2} - \frac{5}{2}C_2e^{-5x/2}\right] + \frac{5}{4}\left[C_1e^{-x/2} + C_2e^{-5x/2}\right] \\ &= \left[\frac{1}{4} - \frac{3}{2} + \frac{5}{4}\right]C_1e^{-x/2} + \left[\frac{25}{4} - \frac{15}{2} + \frac{5}{4}\right]C_2e^{-5x/2} \\ &= \left[\frac{1-6+5}{4}\right]C_1e^{-x/2} + \left[\frac{25-30+5}{4}\right]C_2e^{-5x/2} = 0 \end{aligned}$