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Outline

• Review numerical solutions
• Basics of differential equations
• First order equations

– Separable solutions
– General solution for linear equation

• Introduction to second order equations
– Problems considered
– Basis of solutions
– Constant-coefficient, homogenous case
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Review Numerical Solutions

• Gauss elimination is basic approach

• Need pivoting strategies to reduce 
round-off error in solution

• Modifications of Gauss elimination
– Gauss-Jordan sometimes used for finding 

inverse of matrix

– LU method generally preferred
• Does most of the elimination work without 

knowing the right-hand-side (b) vector

• 1D integer vector required for pivoting
4

Basic Differential Equations

• A differential equation is an equation 
that contains derivatives of a dependent 
variable, e.g., y(x) or u(x,y)

• Differential equation solution gives y(x) 
or u(x,y) as a function of independent 
variable(s)
– Ordinary differential equations (ODE) have 

one independent variable
– Partial differential equations (PDE) have 

more than one independent variable
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Definitions and Terms

• Differential equations have boundary 
conditions or initial conditions

• A general solution to the differential 
equation is one which can fit any 
boundary or initial condition by adjusting 
“constants” in the solution

• A solution that satisfies the differential 
equation and the boundary or initial 
conditions is called a particular solution
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More Definitions and Terms

• The order of a differential equation is 
the order of the highest derivative in the 
equation

• A linear differential equation is one in 
which the dependent variable and its 
derivatives all appear in linear terms

• A homogenous differential equation is 
one in which all terms involve the 
dependent variable and its derivatives
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Examples of ODEs

• Third-order, linear, 
homogenous
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2

 y
dx

yd• Second-order, non-
linear, homogenous

• Second-order, linear, 
non-homogenous
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• Third-order, non-linear, 
non-homogenous

x: Independent
y: Dependent
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Applications

• First order differential equations are 
often used to model rate processes
– Newton’s cooling dT/dt = -k(T - T∞)

– chemical reactions, dci/dt = f(c,T)

• Newton’s second law, F = ma leads to 
second order equations for mechanical 
systems

• Deflection, y, of rectangular beam 
oriented in x direction EId4y/dx4 = f(x)

ii Fdtydm 22
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Separable Forms
• Simple differential equations can be 

written as integrals
– Even if numerical quadrature is required 

this is more accurate than numerical 
solution of ODE
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Linear First-Order Equation

• The solution to the 
first-order equation
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   xryxp
dx

dy


• Is given by the following result

       dxxphwhereCdxxreey hh

• The constant, C, requires the 
specification of the value of y at a 
particular value of x; e.g., y = y1 at x = 1
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P(x,y)dx + Q(x,y)dy = 0

• Is P(x,y)dx + 
Q(x,y)dy = 0 an 
exact form?

• From differential 
of a function of 
two variables, 
f(x,y), see if P and 
Q satisfy partial 
derivative relation

• If df = 0, f = C

dy
y

f
dx

x

f
df










x

f

yy

f

xyx

f

yx

f





















 22

x

f
yxP




),(
y

f
yxQ




),(

QdyPdxdf 

y

P

x

Q








12

Exact Form

• If                 ,   P(x,y)dx +Q(x,y)dy = df
• We may not know (or care) what f is, 

but we use df = P(x,y)dx +Q(x,y)dy to 
solve the differential equation

• We also know that P(x,y)dx +Q(x,y)dy = 
0 means that df = 0 or f = a constant

• We also know that P and Q are 
derivatives of this mysterious f function
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Exact Forms II

• Integrate df = P(x,y)dx + Q(x,y)dy for 
constant f (df = 0)

• f = constant, C, because df = 0
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Exact Forms III

• Final equation must be a function of y only

• Integrate this equation for g(y)
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• Substitute g(y) into equation for f

15

Exact Forms IV

• Combine constants into a single constant
• Obtain implicit relationship between y and x
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Solving Exact Pdx + Qdy = 0

• Step 1 – Integrate P(x,y)dx with y constant
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• Step 2 – Take the y derivative of the step 1 
result and subtract it from Q(x,y)

• Step 3 – Integrate result of step 2, that will 
be a function of y only, over y

• Step 4 – Add results of steps 1 and 3
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Integrating Factors

• Used to integrate P(x,y)dx + Q(x,y)dy = 0 
if P and Q are not exact

• Basic idea is to find a factor, F, that 
multiplies the original equation: FPdx + 
FQdy = 0

• Find the F factor so that FP and FQ are 
exact

y

FP

x

FQ






• Use trial and error or 

process outlined in 
Kreyszig to find F
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First-order Equations

• First order rate equation where rate is 
proportional to amount dy/dt = -ky

• y = y0e-k(t-t
0
)

• General linear first order equation for 
y(x): dy/dx + f(x)y = g(x) has closed form 
solution shown below

• C is found from initial condition

    dxxgeCeydxxfp pp )()(
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Existence and Uniqueness

• Important because we can try numerical 
solution of an ODE with no solution

• Examine dy/dx = f(x,y) with y(x0) = y0 in 
a region |x – x0| < a and |y – y0| < b

• Derivate is bounded: |f(x,y)|  K

• Equation has a solution in region |x – x0| 
< min(a, b/K) 

• Uniqueness requires |f/y|  M
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Existence and Uniqueness

• Example: xy’ = 4, y(0) = 0

• Here we have dy/dx = f(x,y) = 4/x with 
y(x0 = 0) = y0 = 0

• Region is |x – 0| < a and |y – 0| < b

• Derivative is not bounded at x = x0 = 0

• Therefore have no solutions: |f(x,y)|  K

• Attempted solution is y = 4ln(x) + C, but 
we cannot apply this at x = x0 = 0
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Second Order Equations

• First look at 
homogenous 
linear equations

• Then consider 
nonhomogenous 
equations

• Most nonlinear 
equations require 
numerical solution
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Linear Homogenous 2nd Order

• Any linear combination of two 
solutions, y1 and y2, to this equation,    
y = c1y1 + c2y2, is also a solution

• Can prove this by substituting c1y1 + 
c2y2 combination into original equation 
for which y1 and y2 are solutions
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Linear Homogenous 2nd Order II

• A basis of solutions for this equation is 
any two linearly independent solutions 
y1 and y2

• y = c1y1 + c2y2 is a general solution 
where c1 and c2 can be used to fit initial 
or boundary conditions
– Initial conditions specify y(0) and y’(0)
– Boundary conditions specify y(a) and y(b)
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 yxq
dx

dy
xp
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Existence and Uniqueness

• The initial value problem defined above  
on the open interval, I, defined as a < x 
< b, has a unique solution if p(x) and 
q(x) are continuous on the interval, I, 
and x0 is located on the interval, I.

• Next slide discusses linear indepen-
dence of solutions to this ODE
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Linear Independence

• The solution to the initial value problem 
defined above can be written as y(x) = 
k1y1(x) + k2y2(x) where y1 and y2 are 
linearly independent

• For k1y1(x) + k2y2(x) = 0, we must have 
k1 = 0 and k2 = 0 for y1 and y2 to be linearly 
independent

25
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Wronski Determinant

• ܹ ,ଵݕ ଶݕ ൌ
ଵݕ ଶݕ
ଵݕ
ᇱ ଶݕ

ᇱ ൌ ଶݕଵݕ
ᇱ െ ଵݕଶݕ

ᇱ

• W is called the Wronski determinant or 
Wronskian for the ODE under discussion
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• The solutions to the ODE are linearly 
independent if there is some point, x1, in 
the solution interval for which W is not 0

27

Constant Coefficients

• Simplest solution is when p(x) and q(x) 
are constants

• The differential equation for this case is 
shown below

• The solution is shown on the next slide
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Constant Coefficient Solution

• ODE solutions are based on solution of 
characteristic equation 2 + a + b = 0

• Solutions for  are roots of quadratic
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• Two linearly-independent ODE 
solutions are y1 = e

1
x and y2 = e
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Constant Coefficient Solution

• Two solutions, y1 = e
1
x and y2 = e

2
x, 

form basis for general solution

• General solution is y = C1y1 + C2y2

2

4

2

4 2

2

2

1













• Can show solution is correct by 
substituting into original ODE

• Find C1 and C2 from initial or boundary 
conditions
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Constant Coefficient Solution

• General solution is linear combination of 
linearly-independent solutions

• y = C1y1 + C2y2 = C1e
1
x + C2e

2
x

• Derivatives of the individual solutions 
are y1’ =  1e

1
x and y2’ = -2e

2
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2e
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• Use these derivatives (plus y1 = e
1
x and 

y2 = e
2
x) to verify individual solutions
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Constant Coefficient Solution
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Exercise

• Find the solution to the following ODE 
with initial conditions that y(0) = 1 and 
y’(0) = 0
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• Repeat the solution to the ODE with 
boundary conditions that y(0) = 1 and 
y(1) = 0

Exercise Solution (1/3)

• ODE has form discussed previously 
with α = 3 and β = 5/4

• Solution is y = C1e
1
x + C2e

2
x where
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Apply boundary condi-
tions to find C1 and C2

Exercise Solution (2/3)

• First case y(0) = 1, y’(0) = 0
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• We can show that y(0) = 1 and y’(0) = 0

Exercise Solution (3/3)

• Second case y(0) = 1, y(1) = 0
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• We can show that y(0) = 1 and y(1) = 0

Check General Solution (1/2)

• Plug 
solution 
into 
original 
ODE
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Check General Solution (2/2)
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